

設施蘆筍溫室小型害蟲監測與 爆發機制通報系統

Presenter: Cheng-Ying Chou, Ph.D.

Date: 2020.11.5

CONTENTS

Introduction Background of pests, its' effects on crops and economic loss.

Literature

Review of the relative researches analyzing pest numbers and prediction.

Method

Introduce the methods used in this study and the framework of the proposed model.

Results

The results in system construction and validation.

Conclusions Short conclusion of the proposed model in this study.

Introduction

Why greenhouse?

Source pictures : news

World population change

Aging of structure

資料來源:國家發展委員會「中華民國人口推估(2018至2065年)」報告中推估結果, 更新日期:107年8月30日(下次更新日期:109年8月底前)

Farming population in ROC

Year	Total family	Farming family	Percentage (%)	Total population	Farming population	Percentage (%)
1990	5,093,098	859,772	16.88	20,352,966	4,309,787	21.18
1995	5,805,286	792,120	13.64	21,304,181	3,947,686	18.45
2000	6,662,192	724,645	10.88	22,216,107	3,688,885	16.60
2005	7,263,739	771,579	10.62	22,689,774	3,417,572	15.06
2010	7,902,440	780,388	9.88	23,054,815	2,975,523	12.91
2015	8,427,842	778,930	9.24	23,346,728	2,710,680	11.61

age composition of agriculture in 1990

Reduction of cultivated land

The agricultural situation nowadays increase productivity aging of structure overpopulation intelligent management system for the greenhouse pest control reduction of cultivated land

Why asparagus?

10

Background

 economic loss caused by the pest (compared to the same period last year)

 limited by the spatial and temporal scale of data sources (installed widely)

What are the objects of this study?

- This study is a crop-based environmental research.
- Discussion object: pests in the greenhouse
- <u>Pests are spatially heterogeneous</u> and <u>distributed throughout the world.</u>
- Problem to be solved:
 - Develop an appropriate pest prevention method for crops to reduce the economic loss caused by the pest.
 - Pest trend prediction is an important method in pest control strategy, and it is also the basis of pest early warning system. It is limited by the spatial and temporal scale of data sources. Most of the research is medium and longterm prediction, and there are still insufficient representation problems. Therefore, this study focuses on Applications for short-term forecasting, such as automatic paper change timing, pest prevention method recommendations, etc.

Author & Year	Insect trap	Classification hardware	Algorithm	Calculation time	Target insect	Accuracy
Lai, 2011	Attractant	Infrared/ camera	Image processing	3 min on average	Flies	80~90%
Silva <i>et al.</i> , 2013	Attractant	Laser sensor	SVM RBF	Real-time	4 species of mosquitoes 3 species of flies	Best accuracy: 87.33%
Li, 2016	Sticky paper	camera	SVM	N/A	Whitefly/ thrips	83.7/ 89.3%
Yeh, 2016	Rotary sticky paper	camera	Image processing	N/A	Gnat	[†] 95.09%
Rustia <i>et al</i> ., 2019	Sticky paper	camera	Tiny YOLO v3	22 min	Fly/ gnat/ mothfly/ thrips/ whitefly	Average F ₁ -score: 0.926

[†]The accuracy is focus on gnat which is bigger than whitefly. Furthermore, the deployment of sticky paper is not proper.

- Asparagus
 - Perennial herb
- Growth environment
 - Seed germination: 25-30 °C
 - Vegetative growth: 20-30 °C
 - Grow slowly below 15°C
 - The shoot tip spreads above 30 °C
 - Stop growing above 35 °C
 - Not resistant to high temperature and humidity
- Light-loving crop
 - Strong light \rightarrow Lush branches (photosynthesis is closely related to temperature)
- Deep-rooted crop
 - Soil moisture: around 50%
- White asparagus: harvested before protruding from the ground
- Green/ purple asparagus : irradiated by sunlight after protruding from the ground
- Green asparagus (King of vegetables) :valuable high-grade vegetable and health food
- Challenge in Taiwan
 - Dependent on import

- What Is Integrated Pest Management (IPM)?
 - an ecosystem-based strategy
 - a long-term prevention of pests or their damage
 - a combination of techniques
 - Biological control is the use of natural enemies.
 - Cultural controls are practices that reduce pest establishment, reproduction, dispersal, and survival.
 - Mechanical and physical controls kill a pest directly, block pests out, or make the environment unsuitable for it.
 - Chemical control is the use of pesticides. In IPM, pesticides are used only when needed and in combination with other approaches for more effective, long-term control.

- IPM Programs
 - Pest identification
 - Monitoring and assessing pest numbers and damage
 - Guidelines for when management action is needed
 - Preventing pest problems
 - Using a combination of biological, cultural, physical/mechanical and chemical management tools
 - After action is taken, assessing the effect of pest management
- Pest control materials are selected and applied in a manner that minimizes risks to human health, beneficial and nontarget organisms, and the environment.

English name	Silverleaf whitefly	Oriental fruit fly	Flower thrips
Scientific name	Bemisia argentifolii	Bactrocera dorsalis	Frankliniella intonsa
Body length 0.8-1.3 mm		5-6mm	female:1.3-1.7 mm male:1-1.2 mm
Trapping color	500~600nm (y	ellow)	around 500nm (blue)
High-risk site	leaf	fruit	young and mother stems
Influences	Sooty mold of litchi	none	bending tip and browning scale
Prevention methods	sticky paper/ water tray	sticky paper/ male annihilation	sticky paper
Control strategy	spray water	spray insecticidal baits	ultrasonic fogging
Height of sticky paper	close to the top of	f the crop	20 cm below the crop
Active environment	poor ventilation/ dry and high temperature	warm	dry and warm/ cloudy day and before sunrise
Peak period	late spring and early autumn	none	spring and autumn(25°C)
Change paper	7-10 days	7-21 days 18	

The attractiveness of whitefly to different colors

YUV color space conversion

YUV (Y: Luminance, U: Chrominance, V: Chroma)

$$Y = 0.3 * R + 0.59 * G + 0.11 * B$$

U = 0.493 (B - Y)

$$V = 0.877 (R - Y)$$

Where R is red, G is green, and B is blue

Do X-axis and Y-axis operations on the input image first (Prewitt edge)

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, G_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Then put the calculated G_x and G_y into

$$G = \sqrt{G_x^2 + G_y^2}$$

Then take the YUV values of the individual areas as features, the Euclidean distance formula is as follow

$$D = \sqrt{E_Y^2 + (0.5E_U)^2 + (0.5E_V)^2}$$

Morphological processing

A is eroded by B is defined as

 $A\Theta B = \{ z/(B) \ _z \subseteq A \}$

The definition of A expands through B is as follow

$$A \oplus B = \{ z / (\widehat{B})_z \cap A \neq \emptyset \}$$

Opening is the dilation of the erosion of a set A by a structuring element B: $A \circ B = (A \Theta B) \oplus B$

Closing is the erosion of the dilation of a set A by a structuring element B: $A \bullet B = (A \oplus B)\Theta B$

Author & Year	Insect trap	Classification hardware	Algorithm	Calculation time	Target insect	Accuracy
Lai, 2011	Attractant	Infrared/ camera	Image processing	3 min on average	Flies	80~90%
Silva <i>et al.</i> , 2013	Attractant	Laser sensor	SVM RBF	Real-time	4 species of mosquitoes 3 species of flies	Best accuracy: 87.33%
Li, 2016	Sticky paper	camera	SVM	N/A	Whitefly/ thrips	83.7/ 89.3%
Yeh, 2016	Rotary sticky paper	camera	Image processing	N/A	Gnat	⁺ 95.09%
Rustia <i>et al</i> ., 2019	Sticky paper	camera	Tiny YOLO v3	22 min	Fly/ gnat/ mothfly/ thrips/ whitefly	Average F ₁ -score: 0.926
This study, 2020	Rotary sticky paper	camera	Image processing	25.78 sec	Whitefly/ fly	92.81%

Method

The basic of digital image processing technology

System architecture

The flowchart of the pest population monitoring mechanism

The flowchart for the pest monitoring algorithms

Results

The deployment locations

Cooperative experts: Dr. Ming-Hsien Hsieh and Research Assistant Ming-Chi Kuo at Yichu Work Station, Tainan District Agricultural Research and Extension Station, COA.

Pest monitoring device

First version

Since it is often necessary to ask the farmer to help replace the sticky paper, the farmer also reacted to the trouble of replacing the sticky insect paper. Therefore, the first version of the pest monitoring device was developed to solve the need for people to change the sticky paper.

Second versionAdd an acrylic board next to the sticky paper.

Current version
Installing an acrylic sheet around the sticky paper roll.

Motor analysis

	Tension F:	30.0[N]	X
Motor analysis	Rotating speed V:	1.5[m/min]	
•	D _{min}	45[mm]	
	\mathbf{W}_{\min}	2[kg]	
	D _{max}	160[mm]	
	W _{max}	2.0[kg]	
	Other inertia J _e :	0.0001[kg*m ²]	
	External reduction ratio I:	1	
	External reduction ratio efficiency η :	1	
	voltage	AC110V	
	frequency	60Hz	
	output	10W	
	reduction ratio i:	50	
voltage A frequency $frequency$ output $frequency$ reduction ratio i: $frequency$ Torque setting voltage T $T = F^*(D_{min}/1000)/(2*I*\eta) = 0.68 [N*m]$		DC1.7V	
necessary torque	$T = F^*(D_{min} / 1000) / (2^*I^*\eta) = 0.68 [N^*m]$		
rotating speed N	$= V*I/(\pi*D_{min}/1000) = 10.6 [rpm]$		
When the diameter is max			
necessary torque	$T = F^*(D_{max} / 1000) / (2^*I^*\eta) = 2.4 [N^*m]$		
rotating speed N	$= V*I/(\pi*D_{max}/1000) = 3.0 [rpm]$		22
Departmen	nt of Biomechatronics Engineering, National Taiwan U	niversity	32

Pest monitoring device based on IoT

Pest monitoring device based on IoT

2020.7.23 A total of 218,005 pest images have been collected.

2020.7.23 A total of 14,762 pest images have been collected.

2020.7.23 A total of 5,339 pest images have been collected.

Pest identification

- Pest types: whitefly / drosophila / large insect Distinguishing method: Distinguish pest types by pixel size
- Assisted identification technology:
- Whitefly \rightarrow High boost filter for feature highlighting (edge enhancement, sharpening features)
- Drosophila \rightarrow morphological erosion treatment Identification process
- Image pre-processing: grayscale \rightarrow remove background
- Local dichotomy: cut the photo into 15 * 15 sub-images
- Area judgment (length): length filters branches and leaves
- Whitefly <150 (pixel)
- 150 < drosophila <1000 (pixel)
- Large insect > 1500 (pixel)
- Morphological treatment: eroding independent individuals Department of Biomechatronics Engineering, National Taiwan University

whitefly

35

remove

Outline selection (area judgement)

Pest identification

The number of drosophila is 53

The number of whitefly is 23718

Validation

Original image

Sub-image

Average error rate: 7.19% The number of whitefly (block detail) is 139

Validation: 129

input

output

Pest count

Validation: 87 Error rate: 3.45% Validation: 18999 Error rate: 8.66%

Validation

85/75 165/175 146/154 173/167 150/160 121/119 115/125 110/100 142/138 148/152 125/115 130/140 160/150 195/205 75/85

Validation

	(1,1)	(2,2)	(3,3)	(4,4)	(5,5)	(6,6)	(7,7)	(8,8)	(9,9)	(10,10)	(11,11)	(12,12)	(13,13)	(14,14)	(15,15)
N _c	87	165	146	173	150	121	115	110	142	148	125	130	160	195	75
N _p	75	175	154	167	160	119	125	100	138	152	115	140	150	205	85
E _r	16%	5.7%	5.2%	3.6%	6.3%	1.7%	8%	10%	2.9%	2.6%	8.7%	7.1%	6.7%	4.9%	11.76%

The average error rate above is 5.68%.

The total average error rate is 7.19%.

The total average accuracy is 92.81%.

Entity-relation diagram

Real-time pest monitoring

P4

P5

Location	Time	Silverleaf whitefly	Spodoptera litura	Phoridae	Others
P1	2020-05-30 18:30:00	10117	0	306	2
P2	2020-05-30 18:35:00	8398	0	263	1
P3	2020-05-30 17:30:00	9609	0	312	0
P4	2020-05-30 19:00:00	8318	0	2	0
P5	2020-05-30 18:55:00	2158	0	60	0

Web for pest count with image

S Pest Count with Image × +			—	đ	×
← → C ☆ ③ 不安全 140.112.94.167:5165/~chihyueh/pest-image/up	oload.html 🔤 🛧 🖻	e 📕		*	
## 應用程式				_ 其	他書籤

Pest (whitefly) Count with Image

Usage

- 1. Select pest images and click "Upload".
- 2. Wait for uploading.
- 3. The site will download the result file (.csv) automatically.

選擇檔案	未選擇任何檔案
------	---------

Upload

Warning

- 1. Please do not upload <u>over 100 files</u>.
- 2. If no result when uploading and downloading, please compress the file lower than 20GB totally and try again.
- 3. Please use title with number and alphabet only.
- 4. Accept jpg, jpeg, tiff, png files only.
- 5. Contact author at r06631047@ntu.edu.tw

http://140.112.94.167:5165/~chihyueh/pest-image/upload.html Department of Biomechatronics Engineering, National Taiwan University

Loading test

Boxplot

Boxplot

Boxplot

Pest outbreak mechanism

Department of Biomechatronics Englicering, runonar rarvan enversity

Warning notification system

Evaluation of stability of system

Daily report of pest and sensing data

r06631047 9	收件匣 Da	收件匣 Daily report (All) of Pest Image - This is the Daily report of Pest Image 上午									
	1 020	■ 0200507-3.csv									
r06631047	收件更 Da	收件匣 Daily report (05/05) of Pest Image - This is the Daily report of Pest Image - This 20200505.xlsx									
r06631047	收件匣 Da	aily report (0 00503.xlsx	5/03) of Pe	st Imag	e - This is the Daily	report of F	Pest Image	5月3日			
r06631 1 Image		e others I	Drosophila 1	nodeID	Time	airTemn	airIlluminaticairHumid	ty 5月2日			
2 2019 P1 P1 04	130, 0600 ing 10338	1	284 2	6c513e	2020-04-30 5:59:47	21.9	g g) ()			
3 2019 P1 P1 04	130_0605.jpg 10216	2	287 3	6c513e	2020-04-30 6:04:50	21.9	9	9.9			
4 2019 P1 P1 04	130_0610.jpg 10258	2	510 4	6c513e	2020-04-30 6:09:53	222	9	9.9			
5 2019 P1 P1 04	130 0615.jpg 10277	2	502 5	6c513e	2020-04-30 6:14:55	22.1	9	9.9			
6 2019 P1 P1 04	130 0620.jpg 10201	1	97 6	6c513e	2020-04-30 6:19:58	22.2	9	9.9			
7 2019 P1 P1 04	130 0625.jpg 10137	2	511 7	6c513e	2020-04-30 6:25:01	22.4	9	9.9			
8 2019 P1 P1 04	430 0630.jpg 9935	0	815 8	6c513e	2020-04-30 6:30:04	22.6	9	9.9			
9 2019 P1 P1 04	430 0635.jpg 9896	3 2	.90 9	6c513e	2020-04-30 6:35:07	22.8	9	9.9			
10 2019 P1 P1 04	430 0640.jpg 9916	5 3	13 10	6c513e	2020-04-30 6:40:09	22.9	9	9.9			
11 2019 P1 P1 04	430 0645.jpg 9766	4 3	16 11	6c513e	2020-04-30 6:45:12	23.1	9	9.9			
12 2019 P1 P1 04	430 0650.jpg 9923	2 3	10 12	6c513e	2020-04-30 6:50:15	23.3	9	9.9			
13 2019 P1 P1 04	430 0655.jpg 9817	0 2	283 13	6c513e	2020-04-30 6:54:47	23.4	9	9.9			
14 2019 P1 P1 04	130_0700.jpg 9485	1 3	33 14	6c513e	2020-04-30 6:59:50	23.5	9	9.9			
15 2019_P1_P1_04	130_0705.jpg 9485	2 3	327 15	6c513e	2020-04-30 7:04:53	23.6	9	9.9			
16 2019_P1_P1_04	130_0710.jpg 9423	4 3	36 16	6c513e	2020-04-30 7:09:55	23.7	9	9.9			
17 2019_P1_P1_04	430_0715.jpg 9603	2 3	37 17	6c513e	2020-04-30 7:14:58	23.9	9	9.9			
18 2019_P1_P1_04	130_0720.jpg 9675	2 3	13 18	6c513e	2020-04-30 7:20:01	24.1	9	9.9			
19 2019_P1_P1_04	430_0725.jpg 9691	3 3	609 19	6c513e	2020-04-30 7:25:04	24.2	9	9.9			
20 2019_P1_P1_04	130_0730.jpg 9864	2 3	27 20	6c513e	2020-04-30 7:30:06	24.4	9	9.9			
21 2019_P1_P1_04	130_0735.jpg 9999	4 2	276 21	6c513e	2020-04-30 7:35:09	24.7	9	9.9			
22 2010 PI PI N	130 07/0 ing 10238		200 22	6c513e	2020-04-30 7-40:12	24.0	0	0 0			
Pest	image Environment	sneet (+)		Pest image Enviror	iment Sh	eer (+)				

Conclusions

Conclusions

- This study proposes a pest monitoring system which combines the self-changed sticky paper mechanism.
- The proposed method average accuracy is 92.81%.
- Warn and provide corresponding preventive measures for agricultural workers before pest outbreaks.
- Real-time analysis, remote control and automatically update the pest numbers makes the system user-friendly.
- The current focus on whiteflies, flies and other pests is an asparagus problem that can be quantified. Future expectations can be studied against more asparagus problems.

