SpecTalk: Integrating Sensor Specifications into IoT Implementation

林一平(Yi-Bing Lin) Winbond Chair Professor NYCU, CMU, NCKU, Asia U

Introduction

- Taiwan Association of Information and Communication Standards (TAICS) is developing an automatic process to allow the IoT applications to be conformed with TAICS specifications.
- TAICS is sponsored by Ministry of Economic Affairs, Taiwan.

Taiwan Association of Information and Communication Standards (TAICS)

- TAICS is an industry organization founded in June 2015 with the members from industry, research and academia organizations in Taiwan
- The objective of TAICS is to bridge the local industry with global standard initiatives/organizations by contributing the study results or consolidated consensus, it may also develop the local standard or study report per request.
- TAICS is open for the registration by all the companies/organizations with division in Taiwan.

台灣資通產業標準協會

Taiwan Association of Information and Communication Standards

Seven technical committees (TCs) have been chartered focusing on

- Advanced Mobile Communication
- Network Communication
- Device Internetworking
- Audiovisual Services and Communications
- Network and Information Security
- Intelligent Buildings ICT
- Internet of Vehicles (IoV) & Automated Driving

Bridging the IoT Applications with TAICS Specifications

- Proposed by Yi-Bing Lin, a member of Board of Directors of TAICS, TAICS is developing an automatic process to confirm the IoT applications with TAICS specifications.
- This mechanism was The procedures have been implemented and is being used to inspect the smart buildings in Shuinan Trade and Economic Park, Taichung

Test an IoT Device with TAICS Specification

Step 1. Device Feature (DF) Creation

2.1. Add a new Device Model

2.4. Add DF ventSts to the DM

2.5. Create the DM Name

Step 3. Device Application Generation

3.1. Specify the Generator under Test

3.2. Set up the Parameters of the Generator

	Generator-Test-	Model -	Flush	Delet	e			Simulatio	
र	Generator		Generator						
battSts-I oilSts-I		¥	ntSts 💉	Туре		Function	Simulatio	Simulation Range Min Max	
L	ventSts-I		x1	sample	~	disable	0	1	
		Sa	ve						

Step 3.3. Automatically Generate the Device Application

Step 4. The manufacture is responsible for writing the SA interface

Step 5. SpecTalk Tests the Generator

Step 5. Simulate the Generator

Types for Acceptance Test

- Self-Test
- Mutual-Test
- Visual-Test

Hsinchu International AI Smart Park

- Hsinchu International AI Smart Park will be managed by Accton (one of the largest ICT company in Taiwan, Revenue US\$ 1.85 Billion in 2020).
- SpecTalk will be used by Accton to verify all smart applications in

the park.

Self-Test Example: Smart Building of China Medical University in Shuinan Trade and Economic Park, Taichung

Self-Test Configuration for the Generator in the Smart Building

The IDFs and ODF for the Water-Cooled Chiller

Self-Test Configuration for the Water-Cooled Chiller in the Smart Building

Mutual-Test for the Window Control

(a) CO2, temperature, humidity sensors

(b) Window control

Mutual-Test Configuration for Window Control

Mutual-Test Example: Greenhouse in the Bao Mountain, Hsinchu

Mutual-Test Configuration for the Greenhouse

Visual-Test Configuration for the Fountain in the Ming Der High School

Visual-Test: Meter Reading Test Results YOLO Recognition Rr 3 LOWATTHOURS Qmax 6m³/h M0 26 01 ACTARI Qmin 0. 12113/10 2A Pmax 75mbar SINGLE-STATOR WATTHOUR METER 3 TYPE AB1 S. 57 C2 G46 60 Hz TA 30 Kh 7.2 Made in England A ALMIN 200 CL FORM 2S 240 V 3 W SC6 * CG0 80148 3070 0* 0 4 85 28 G4 A5027406 06 01 2006

Comments on Visual-Test

- Lamp test is conducted during nights where the switches are automatically turned on and off.
- YOLO already knows the specific spots under test in the picture and therefore can accurately detect the changes on these spots.
- We can conduct multiple tests simultaneously in one video screen (for example, lamps and sprinklers in the Ming Der High School)

TACIS Partners

- The Telecommunication Technology Committee (TTC), Japan Technology Committee
- The Telecommunications Industry Association (TIA),
 USA
- Institute of Electrical and Electronics Engineers (IEEE)
- China Communications Standards Association (CCSA), China 中国通信标准化协会

TACIS Partners

European Telecommunications Standards Institute

- The Association of Radio Industries and Businesses (ARIB) ARIB WEBSTORE
- Telecommunications Standards Development Society (TSDSI) , India tsds.
- Malaysian Technical Standards Forum Bhd (MTSFB), Malaysia
- Telecommunications Technology Association (TTA),

Korea

Step 3. Device Application Generation DF Management \times *i* IoTtalk Homepage × 1 IoTtalk × + O × ---a iottalk2.tw/connection C $\leftarrow \rightarrow$ e j ● 應用程式 ★ Bookmarks M Gmail - Inbox (2) -... S 🗘 tvt-web S twc-web 🗘 iot 🗘 access-ieee 📙 其他書籤 **>>** := 閱讀清單 LINE Generator-Test-Model -Flush Simulation **O** Delete Import Export Logout Pe Dandeion 9 Dummy Device Dummy Device Tag < > Fan game Generator ů Glasses 口))) GPS

1

繁體

上午 08:24 星期二 2021/6/29

2

- 01. import time, random, requests
- 02. import DA
- 03. import Your-API
- 04. ServerURL = 'https://DomainName' 🖉
- 05. Reg_addr = "<mark>GEN-0012</mark>″↓
- 06. DA.profile['dm_name']='<mark>Generator</mark>'~
- 07. DA.profile['df_list']=['<mark>oilSts</mark>', '<mark>battSts</mark>', '<mark>ventSts</mark>',]+
- 08. DA.profile['d_name']= 'Your-Device-Name' +
- 09. DA.register(ServerURL, Reg_addr)↔
- 10. while True:
- 11. try:↩
- 12. oilSts _data = Your-oilSts-function +
- 13. DA.push (' <mark>oilSts</mark> ', <mark>oilSts _data</mark>) 🖉
- 14. battSts _data = Your- battSts -function 🚽
- 15. DA.push (<mark>'battSts</mark>', <mark>battSts_data</mark>)↩
- 16. ventSts _data = Your- ventSts -function +
- 17. DA.push ('<mark>ventSts</mark>', <mark>ventSts_data</mark>)↔
- 18. except Exception as e:
- 19. print(e)↔
- 20. if str(e).find('mac_addr not found:') != -1:+
- 21. print('Reg_addr is not found. Try to re-register.')
- 22. DA.register (ServerURL, Reg_addr)+
- 23. else:↩
- 24. print('Connection fails.')↔
- 25. time.sleep(1) +
- 26. time.sleep(0.2)↔

Step 5. Simulate the Generator i lota \times a iottalk2.tw/connection C . Ń 🏢 應用程式 🔺 Bookmarks 阏 Gmail - Inbox (2) -... 🚱 🟮 tvt-web 🔇 twc-web 🏮 iot 🏮 access-ieee 其他書籤 := 閱讀清單 >> LINE Model - Slush Generator-Test-Delete Simulation Import Export Logout Po IDF Monitor Sub-stage: Input 🗸 Continue Table 1 ventSts Ø Ö Display Generator 9 13:20:35 1.00 Controller battSts 13:20:36 1.00 Join2 13:20:37 0.00 oilSts 0 13:20:38 0.00 ventSts 0.00 13:20:39 < > Input Data Format: "data;data;data". e.g., 5; 3.1; ODF Monitor Sub-stage: Function ~ 1 Controller V Table 13:20:35 1.00 ((() 13:20:36 1.00 13:20:37 0.00 0.00 12.20:38 13:20:39 0.00 繁體 F. 上午 08:33 星期二 Controller 2021/6/29 Timestamp y1 $\overline{\mathbf{v}}$ (2)

Generator units